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In this paper we explore the mathematical foundations of quantum field theory. 
From the mathematical point of view, quantum field theory involves several 
revolutions in structure just as severe as, if not more than, the revolutionary 
change involved in the move from classical to quantum mechanics. Ordinary 
quantum mechanics is based upon read-valued observables which are not all 
compatible. We will see that the proper mathematical understanding of Fermi 
fields involves a new concept of probability theory, the graded probability space. 
This new concept also yields new points of view concerning ergodic theorems in 
statistical mechanics. 

1. INTRODUCTION 

In Edwards (1981a) we presented a systematic approach to the 
mathematical foundations of quantum mechanics along the lines originally 
pioneered by von Neumann. This approach requires a substantial mathe- 
matical background that most physicists find unpleasant (e.g., measure 
theory). They prefer to sacrifice mathematical rigor--and even consis- 
t e n c y - i n  exchange for a flexible formalism that is more readily learned. 
Thus physicists follow Dirac and not von Neumann. 

In this paper we explore the mathematical foundations of quantum 
field theory. From the mathematical point of view, quantum field theory 
involves several revolutions in structure just as severe as the revolutionary 
change involved in the move from classical to quantum mechanics, if not 
more so. Ordinary quantum mechanics is based upon real-valued observ- 
ables which are not all compatible. We will see that the proper mathematical 
understanding of Fermi fields involves a different conception of probability 
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theory. This new conception will also yield new points of view concerning 
the need for ergodic theorems in statistical mechanics. 

Fermi fields were first introduced by Jordan and Wigner in 1928 by the 
simple formal move of replacing commutators by anticommutators. They 
were viewed as annihilation and creation operators for Fermi particles in a 
"second-quantized" formalism. From our point of view, Fermi fields repre- 
sent a totally different structure from that of second quantization. The 
physicist's approach allows him to move fluidly between what are for the 
mathematician radically different models. The structures and viewpoints we 
will explicate are at least tacitly present in much of the physics literature 
(e.g., the work of Schwinger). It was our struggle to comprehend from a 
mathematical viewpoint Kadanoff (1977) which led most directly to our 
present position. 

In this first paper we will restrict our attention to lattice field theories, 
leaving the much more sophisticated continuum models to Paper II. In 
Section 2.2 we introduce gauge fields and in Section 2.3 Fermi fields. In 
Section 2.4 we discuss phase transitions and critical phenomena. In Section 
2.5 we discuss thermodynamic limits. We conclude this paper with some 
comments on the Wilson model of quarks and strings on a lattice. 

2. LATrICE FIELD THEORIES 

2.1. The Ising Model. Since its introduction in the 1920s by Lenz and 
Ising, the Ising model has become one of the most important models in 
modem physics because it is the simplest nontrivial model of cooperative 
phenomena. The model consists of a finite collection o =  (oill<~i<~N) of 
compatible two-valued observables oi, where the index i is viewed to vary 
over a square lattice E of side L ( N = L  d, where d is the dimension of the 
lattice). If the values of o i are denoted by - 1 and + 1, then a configuration 
of o determines a point in E= { - 1, + 1 }s, and a joint probability measure/z 
for the o~'s determines a probability measure on G. From the state # one can 
compute various moments such as (oi), (oioj), etc. These moments can be 
empirically determined (at least approximately) by choosing a large ensem- 
ble of identically prepared systems (i.e., each is in a state determined by a 
prior probability distribution/~) and computing the average over the ensem- 
ble of the values empirically obtained for o~, oio J, etc. (Of course, the actual 
moments (o~), (oioj) would only be obtained in this way with probability 
one in the limit of an infinitely large ensemble.) In this way we obtain new 
observables (ai) ,  (o i~) ,  etc., which we shall call second-order observables. 
In practice physicists usually do not measure the o i directly but instead do 
scattering experiments (e.g., neutron scattering in ferromagnets or light 
scattering in gases) which yield a scattering Green's function G(k)  which 
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they interpret as the Fourier transform of (a~ai+r). This leads to two 
possible different views of the moments (aiai+r). In the usual view, 
(o;ai+r) is not itself obtainable in a single experiment, and what one is 
actually doing in scattering experiments is making a sample average of 
aioi+ ~ and invoking an (unproved) ergodic theorem to relate sample and 
ensemble averages. An alternative view is that the scatter directly couples to 
the disposition # and thence directly yields the moments (ofl~+~). This view 
will be necessary when we study Fermi fields. In any case, the Green's 
functions are the objects of central interest to the physicist. 

If we have a family of states # ,  depending upon a parameter a varying, 
say, in R n, then we would naturally be interested in the analytic properties 
of (o i )  ~, (afl j)~,  etc., as a function of the parameter o~. In this way we could 
introduce new (third-order) observables 

d a I , 

0 2 
etc. 

In statistical mechanics particular attention is focused upon the proba- 
bility measures first introduced by Gibbs. In the context of the Ising model, 
the Gibbs distributions are defined as follows: (a) The microcanonical 
distribution 

,M(o)= 
#{.IH(o)=E} 

to each o such that H(a) - - -E ,  where H is the Hamiltonian of the s y s t e m -  
(e.g., in the simplest case taken to be 

nearest i 
neighbor 

(b) The canonical distribution corresponding to a fixed mean energy ( H )  = E 
is given by 

~ tc (a )~  e --fill(a) 

Y,,e -~H(,,) 
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where/3 is chosen so that 

Z,,H( o )e -/~H(o) 
( H ) -  =E 

~,e -~H(o) 

(Note that since we want/x~ to be a probability measure, it is necessary that 
/3 be an extended real number, but nothing in the model requires that/3 > 0. 
This suggests that one should look for phenomena for which it would be 
appropriate to ascribe a "negative" temperature and develop the ap- 
propriate thermodynamics.) (c) The grand canonical distribution corre- 
sponding to a fixed mean energy ( H ) = E  and a fixed mean number of 
particles (N(o))= (Y, oi)=N (here we have shifted to a lattice gas language 
with o i E (0, 1 )) is given by 

e x p ( - [ H ( o ) - N ( o ) ] )  

Yoexp( - /3[  H( o ) --/~N( o )]} 

where/3 and/7 are chosen so that ( H ) = E  and (N(o))=N. 
There are various ways of attempting to motivate these distributions. 

These distributions can be shown to minimize "information" (equivalently, 
maximize entropy) subject to their respective constraints. Furthermore, if 
one assumes that the microcanonical distribution applies to a large system, 
limit arguments lead to the canonical or grand-canonical distributions for 
the description of certain small subsystems. But the way we favor most of 
motivating these distributions is to simply recognize the use of these Gibbs 
measures as a basic postulate concerning the manner of preparation of the 
system. Alternatively, from the point of view of pure probability theory, 
these Gibbs measures define simple models of families of random variables 
which are strongly dependent upon their neighbors, and satisfy a gener- 
alized Markov property. 

To the Gibbs canonical and grand canonical distributions one associ- 
ates the partition functions 

Z~= x exp[-/3H(o)]=exp(-flVf ) and 
0 

Za ~ E exp( - /3 [  H(o  ) - g N ( o  )] } = exp(/3Vp ) 

where f is defined to be the free energy per unit volume, and p is defined to 
be the pressure. Furthermore, one associates 13 with inverse temperature 
(i.e., /3=l/kT, with k equal to Boltzmann's constant) and /2 with the 
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chemical potential. In this way one can associate traditional thermodynami- 
cal variables such as temperature and pressure with the totally static Ising 
model. Note that while pressure and temperature are observables in thermo- 
dynamics, their occurrence in the Ising model is more complex--at  best, 
they can be related to higher-order observables. The introduction of the 
partition function Z C and Z a can be motivated without appearing to 
thermodynamics by observing that In Z C and In Z c provide generating 
functions for various correlation functions occurring in the model, e.g., 

( n )  = -- ~ In Z ~, up ( N ) = -~ ~ ln Z a, 

1 ( x o i )  = z c, etc. 

Obvious extensions of the Ising model are obtained by considering 
more general lattices, Hamiltonians, and spin variables (i.e., allowing o i to 
take on values in a range X more general than Z 2, e.g. X = R  or $2). One 
can also consider quantum mechanical analogs where not all the oi are 
compatible; in this case one uses Gibbs-von Neumann density matrices 
such as pr176 with its associated partition function 
Z ~ -~Tr(e -BH(.)). 

2.2. Gauge Fields. We shall now consider some less obvious extensions 
of the Ising model. Suppose each o i takes values in a set X~ such that each X~ 
has two elements. In order to define an interesting Hamiltonian which 
couples nearest-neighbor spins o i we may assume given for each i a map 
( - - , - - ) i :  Xi • and for each nearest-neighbor pair i, j an isomor- 
phism U/j: X/~Xj.  Given such data, a simple Hamiltonian is H(a)=Y.~n. 
(U~joi, ~)j.  From H we obtain a Gibbs measure and partition function in 
the standard way. One should note carefully that the ( - - , - - ) i  and U~j are 
part of the underlying geometry of the problem (determining an inner 
product and connection on the bundle X ~  ~) and not new observables. We 
have no new Green's functions in this model. On the other hand, the inner 
product ( - - ,  - - )  and connection U will reveal themselves indirectly through 
changes in the various moments (oioj) [more precisely, one must choose 
funct ionsf  : X/--, R, and then one can form moments (fi(oi)-fj(~))]. Hence, 
they are higher-order observables similar in nature to parameters occurring 
in the Hamiltonian. (One might have other direct experimental means of 
determining the geometry.) U is usually called a gauge field or string 
variable and often mistakenly considered to be a first-order observable. In 
most models the choice of connection U is not itself fixed, but instead 
considered to be determined by a probability measure/~ on the space of 
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connections ~=conn(X~E) ,  and the Green's functions are further aver- 
aged over /~, i.e., G(i,j)=((aioj)u>l~. In this way one has a chance of 
obtaining translation-invariant Green's functions. A typical choice for/~ in 
this model where the space of connections is finite is determined by Gibbs 
weight function e ACe), where the A(U) depends only on the "curvature" of 
U. For example, the Yang-Mills action AYM(u) is defined as follows. A 
closed loop P =  (i, j, k, l. i) of nearest-neighbor bonds is called a plaquette. 
Let Iso(Xi) be the t~vo-element group of isomorphisms of Xi. For each i let 
Xi: Iso(X~)~R take the identity to 1 and the switch map to -1 .  For a 
plaquette P defined Ap -----xi(UliUk,UjkU~j), AYM(u)=(1/2g~)Y~Ap, where go 2 
is the Yang-Mills coupling constant and the sum is over all plaquettes in E. 
In more general models one must use Haar measure on the gauge group G 
in order to define a background measure on the space of connections C and 
also choose characters X~ on Iso(X~)---G [one then takes A e = 
Re xi(UliUklUjkUij)]. Since # depends upon the curvature of U, one can to 
some extent determine the local curvature of U by measuring the Green's 
functions. Thus, the curvature of U can also be considered a higher-order 
observable. From this point of view, one sees that the electromagnetic field, 
which is mathematically identified with the curvature of a connection, is not 
a first-order observable and hence one should not try to "quantize" it when 
one does quantum electrodynamics. 

To stress this point we shall now discuss a gauged version of the 
Heisenberg model. The Heisenberg model is defined by associating to each 
lattice point i a partial algebra A i of real-valued observables. In the simplest 
case Ai is assumed to be isomorphic to the partial algebra of Hermitian 
elements in L(C 2), where a family of elements in L(C 2) are called compat- 
ible (or simultaneously observable) if they lie in a commutative subalgebra 
of L(C2). Each of the A~ has a natural embedding in the tensor product 
algebra A = | 2)i. Taking the tensor product of the natural traces on 
each L(C2)i yields a trace Tr= | on | Of special interest 
are the Panli matrices 

( i) o), oy=(O 1), , _ ( o  ~ 
~x=~O --1 1 0 -- 

The Hamiltonian for the Heisenberg model is defined by 

H=- ~ i j  i j  i j  o;Wr +aya; +a;o~ 
nearest 

neighbors 

The main Green's functions of interest are of the following type: 

Tr(o:o/e -H ) 
- -  i j - -  G(i,x;j,y)-(a;r Tr(e_R ) 
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(Note that one may obtain an alternate description of the Ising model by 
choosing A i isomorphic to the algebra with generators 1 and o with 02 -- 1 
and defining Tr io=0  and Tri 1 = 1.) In order to gauge this model we must 
assume that the observables at i take values not in R but instead in a 
one-dimensional real vector space X~. By choosing for each i an isomorphism 
f~: X~ ~ R ,  we can pull back the Pauli matrices o~, o~, o~ to obtain special 
)(/-valued observables cTj, 6~, 6z/. Suppose, furthermore, that each X i has an 
inner product ( - - ,  - -  ) and that the bundle X--, ~ has a connection U. Then, 
if i andj  are nearest neighbors, 6j and 5 fl determine a real-valued observable 
by taking the inner product of the result of measuring 6/(which is in Xj) 
with the image under U(i, j)  of the result of measuring 6x'. Denote this new 
real-valued observable by {U(i, j)si,  rJ>. Since these new observables 
define elements A = | 2)i, one can form the Hamiltonian 

H= -- E <U(i, j)6i,6xJ>+<U(i, j)5],Si>+<U(i, j)S], 5J> 
l l .n.  

This Hamiltonian defines new moments. But we can go further and also 
average over the choice of connections using the Yang-Mills action. We 
thus obtain the Green's functions of the gauged Heisenberg model. Note 
that although the Heisenberg model is a quantum mechanical model, there 
is nothing quantum mechanical about the gauge field. 

2.3. Fermi Fields. In order to obtain a clear conception of the meaning 
of Fermi fields we will first introduce the notion of graded probability 
theory h la Kostant (1977). Graded probability theory is an extension of 
classical probability theory in a different direction from that of quantum 
probability theory. The main idea is to extend the commutative algebra of 
complex-valued observables M(X) to a Z2-graded-commutative algebra 
A(X) whose quotient by its ideal of nilpotent elements A'(X) yields back 
M(X), i.e., we have a short exact sequence 

O + A ' ( X ) + A ( X ) + M ( X ) ~ O  

of graded commutative algebras. Furthermore, one assumes that A(X) is 
(noncanonically) isomorphic to the tensor product of M(X) with an exterior 
algebra A*(Cn). The elements of A(X) cannot be viewed as observables 
yielding values in A*(C n) (or in anywhere else, for that matter). The only 
tie this model has to experiment is that we will be able to associate Green's 
functions to it. This yields quite an exotic conception of a field theory. For 
physicists, quantum field theory consists of a family of Green's functions, 
and for each such function an algorithm for generating certain graphs called 
Feynman diagrams, together with a procedure which associates to each 
diagram a formal analytic expression, together with (renormalization) tech- 
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niques for converting the formal analytic expressions into finite numbers. 
All of the above combine to yield asymptotic expansions for the Green's 
functions. Graded probability theory yields a systematic procedure for 
generating the physicists' formulation. The relationship is somewhat analo- 
gous to the relationship between Newtonian and Ptolemaic astronomy 
(especially if you believe that gravity is an "occult" quantity). 

The simplest examples of graded probability spaces occur as follows. If 
V~ X is a complex vector bundle over X, then we can take A(X) to be the 
space of sections of A *(V). If V= W e  W, where W is the conjugate bundle 
of the Hermitian bundle W", then V has a canonical orientation ~, ~ A 2n(V). 
We thus obtain a canonical (linear) isomorphism ]~: A2"(V)-~M(X). If 
extends to a degree 0 linear function ]~: A( X)--, M(X) which is called the 
Fermionic integral. A measure on X determines a linear functional f: 
M(X)  --, 12. The quadruple ( X, A( X),If, f ) will be called a Fermionic mea- 
sure space. A(X) comes with a natural conjugati__on extending the natural 
conju__gation on M(X) (e.g., if w I E W and w2 ~ W, then WlWz=W2 A ~  0. If 
H = H ~ A(X), then we can form Green's functions G( f ) = ( 1 /Z)f I f (  fe - H), 
where Z is the partition function ftf(e -H) and f~A(X).  The case (pt., 
A*V,]F, 6pt.) is of particular importance. The elements of the graded Lie 
algebra of graded derivations of A*(V) are called infinitesimal supersym- 
metry transformations. Those derivations of degree one are said (in the 
physics literature) to relate bosons to fermions, i.e., to map Aev(V) to 
A~ 

"Quantized" versions of Fermionic measure spaces are simply "dia- 
grams" (see Edwards, 1981a) of the form {(X~, A(X~),gf)). One simple 
way to obtain such a diagram is to start with a noncommutative C* algebra 
B and a state O on B, tensor B by A*(V) to obtain the graded algebra 

--*B. B| A*(V) '7 Then 

{(X~, A( Xa),~, p ]a)A( Xa)=qr-l(eo, 
where a is a commutative 
subalgebra of normal elements 
in B and X~ is the maximal 
ideal space of a} 

is a diagram of Fermionic measure spaces. Note that in this case the 
elements f of B |  do not have any simple interpretation as observ- 
ables, but can only be related to experiment via the Green's functions 

1 G(f)= 
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(There may be more general possible choices for G than those given by this 
formula; this leads to a graded Gleason problem.) A family {f~} of elements 
of B| A *(V) will be said to be compatible if they lie in a graded commuta- 
tive subalgebra of B| Thus in the usual relativistic quantum field 
theory of fermions the vanishing of the anticommutators {~bi(f),~(g)} 
when f and g has spacelike separated supports means that ~;( f )  and ~(g)  
are compatible (i.e., Einstein causuality holds), and hence one can define 
Green's functions @i(f)~(g)).  

Lattice Fermionic field theories are now defined by associating to each 
lattice point i~E  a Fermionic measure space (X,., A(X,.),(, f )  [or, in quan- 
tum theories, a diagram of such spaces, or, more generally, a diagram 
{(Xi, A(Xi), fir)}, where f~: A(X/)--C]. Consider the simplest case where 
each X i is a point and A(X/) = A *(Vi) = A *(W~@ W/). Let U be a connection 
on the bundle W--, E. Then a simple choice for the Hamiltonian is 

H :  ~ +--[U(i,j)~/[~]~"~(pt., @ A*(V~) ,~ ,6)  
n . n .  

: (x, ,  A(Xi) , f ,  

where ~ is a basis for W~, and one chooses the sign --+ depending upon 
whether j is to the left or right of i. In forming the Green's functions one 
may also wish to average over the choice of connection using the Yang- Mills 
action. 

2.4. Phase Transitions and Critical Phenomena. One of the most strik- 
ing common occurrences is the change of water into steam when its 
temperature is raised. Water and steam have vastly different properties; yet 
the mind tends to assume a single underlying substance whose properties 
have undergone a very rapid change. Atomic theory identifies the underly- 
ing substance as H20. If one studies the density of H20 as a function of 
pressure and temperature, then one finds that for most choices of P and T 
one obtains a unique value of p, but for certain special values of P and T 
there are two or even three possible values of p corresponding to the 
different phases of H20 called ice, water, and steam. This situation is 
summarized in Figure 1. Experimentally, it seems that 0 is a nice function of 
P and T except across the critical curve where it has a jump discontinuity. 
At the critical point, c, 0 is continuous. By going around c, one can change 
water into steam gradually, i.e., without there ever occurring the striking 
phenomena associated with a phase transition. 

The magnetic properties of iron are a second prime example of critical 
phenomena. Here, one studies how the magnetic vector m depends upon the 
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Fig .  1. 

external magnetic fields h and the temperature T. For h :  0 and T< T c there 
are two possible choices of m. One obtains the diagram shown in Figure 2. 
In Figure 2 the critical curve is the interval [0, T~] on the T axis. There are 
many other similar phenomena occurring throughout contemporary science. 

Let us look more closely at some of the phenomena occurring near the 
critical point. The spontaneous magnetization is defined by m0(T) = 
limh_~o§ and one discovers that for T<Tc, mo(T)>O. More pre- 
cisely, one obtains a curve having the form shown in Figure 3. This figure 
suggests that mo(T ) might behave like (To - T) ~ for T near to but less than 
T c and fl some critical exponent with 0</3< 1. More precisely 

In rno( T ) 
r =  lim 

r-, T~- ln(T~- T) 

If the limit exists, we write mo(T)~(T  ~ - T )  ~. Empirically, fl is often found 
to be approximately 0.33. 

At T--T c one finds the dependence of m on h shown in Figure 4. This 
figure suggests that m~h ~/8 when h is very small. Here ~ is some number 
greater than unity and often found to be approximately 4.2. 

I 10440 

Fig. 2. 
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The magnetic susceptibility X is defined by 

x(T,h)---( am 

For  h = 0  one finds the dependence of In X on l n ( T - T r  shown in Figure 5. 
This figure suggests that X ~ ( t - t o )  -~ for T near to but greater than T~ and 
y > 0 .  One similarly finds that the data suggest that x~(T~ - T)  -v when Tis  
near to but less than To. Furthermore, the data also often suggest that 
Y ~ 7 ' ~  1.3. 

The specific heat C is the rate of change of energy with respect to 
temperature. At h = 0 one observes the dependence of C on T shown in 
Figure 6. This figure suggests that 

c :r<L 
-~ 

The data also suggest that a-a '~O.1 .  
Similar critical exponents are defined for other systems such as fluids. 

Besides the relations a = a '  and y = 7', one also seems to have other relations 
occurring among the critical exponents, such as a '  + 2 f l + y ' =  2. 
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~.n X : ~  

~n(T-T c) 

Fig. 5. 
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! 

T c T 

Fig.  6. 

2.5. The Thermodynamic Limit. In the previous section we have de- 
scribed some typical critical phenomena. One goal of statistical mechanics is 
to derive these phenomena from an underlying microscopic model. If we 
have some microscopic model (e.g., the Ising model described in Section 2,1) 
with Gibbs measure t~=e-/~n/Z, then one can associate to this model a 
specific heat C = -- O(H)/OT,  where T is the temperature which is defined to 
be proportional to 1~ft. The free energy f is defined to be - 1 / f l l n  Z. One 
thus has H = f - T  Of/OT, and hence C= - T  02f/OT 2. Thus, in order that C 
have the singularity structure at the critical temperature T c which was 
described in Section 2.4, it is necessary that f be a nonanalytic function of T 
at T c. In the case of the Ising model for N spins, one has Z=Y, oe -aH<~ 
where the sum is over the 2 N possible configurations of o. Since the sum is 
finite, Z is a strictly positive analytic function of/3. Hence, f =  - ( 1 / f l ) l n  Z 
is an analytic function of fl for f l>0.  Thus, f has no singularities for 
0 <  T<  oo, i.e., there is no critical temperature To. Thus, the critical phenom- 
ena of Section 2.4 cannot be derived from the Ising model of Section 2.1. If 
one feels that the model is a basically correct microscopic model, then one is 
led to reinterpret the experimental "facts" of Section 2.4. For example for 
large N the Ising model's specific heat might look as in Figure 7. Thus C N 
would be an analytic function for all T having a maximum when N is large 
near T C. Furthermore, the limit as N ~  oo of C N may very well be described 
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C~ t | 

Tc T 

Fig. 7. 

near T c by a power law C=(T-Tc)-'L These heuristics suggest two pro- 
grams of research. One, experimental, is aimed at exploring the critical 
region to see if one can find a maximum for C. If one meets with success 
here, one will have obtained a case study in the importance of theory for 
guiding experiments. But success in this project may be foredoomed if the 
size of the critical region is too small (e.g., 10-~~176 For example, the 
specific heat of a superconductor looks experimentally as shown in Figure 8, 
i.e., it seems to have a discontinuity at T~ and not a power law behavior at 
all. But theory suggests that C really looks as shown in Figure 9 with the 
critical region simply too small for present techniques to probe. The second 
program of research is to rigorously derive the asymptotic properties of 

t 
J 

i 

T c 

Fig. 8. 

l 

T 
c 

Fig. 9. 
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quantities such as C N as N-~ oo. One might also try to formulate directly 
models for which N =  oo, and to derive their thermodynamic properties. For 
the Ising model and its relatives described in Section 2.1 much is already 
known concerning the models described in Sections 2.2 and 2.3 (see 
Kadanoff, 1977; and Ostwalder and Seiler, 1981; and the next section). 

If the thermodynamic limit exists, then an important question which 
arises is whether or not the system has long-range order. This is a question 
concerning the decay rate of the Green's functions G(fg'~), where ga is g 
translated by the lattice vector a (and we are assuming ( f ) =  {ga)=0). If 
]G(fga)l <-C l al/~, then one says that the system has no long-range order. ~ is 
called a correlation length and 1/~=m is called a mass. Poles occurring in 
the Fourier transform G(f, ga) of G(fg a) are said to be related to the 
particle structure of the theory, the real part of the pole corresponding to 
the mass and the imaginary part to the (inverse) lifetime of the particle. This 
use of particle language is certainly a long way from our intuitive use of 
particle language for describing billiard balls! If one has a field taking 
values in C N, then, as the parameters in the model are varied so that a 
critical point is approached, long-range order sets in (i.e., one has sponta- 
neous symmetry breakdown as in ferromagnetism), the mass m goes to zero, 
and G acquires a pole at the origin. Physicists describe this pole by saying 
that the model has attained a massless Goldstone boson. If one now gauges 
this model, the long-range order disappears and m stays finite. This is 
because the local geometry itself is varying in a random fashion preventing 
the symmetry breakdown. In fact, i f f  and g are allowed to depend upon the 
U(i, j )  for finitely many pairs (i, j), then {fg~ -mla[ (i.e., the correla- 
tion in the geometry also exponentially decays). One says that the gauge 
field U has acquired a mass m. This process is known as the Higgs 
mechanism. 

2.6. The Wilson Model of Quarks and Strings on a Lattice. Suppose 
one discovered a new liquid B. On the basis of past experience one would 
expect that by increasing its temperature one could make it undergo a phase 
transition into a gaseous phase Q. Suppose that such attempts to induce a 
phase transition fail. Then, either we do not have the technical ability to 
raise the temperature above the boiling point T c of B or else T c = oo and our 
failure to produce a gaseous state is not our fault. This is the present 
situation with regard to baryons. Baryons are believed to be composed of 
two or three quarks. Physicists expected that at very high energies the 
quarks would dissociate and one would see free quarks. This has not yet 
happened. The Wilson model of quarks and strings on a lattice is an 
attempt to understand these phenomena. (Of course, one is really interested 
in the relativistic model obtained by analytically continuing the continuum 
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limit of the Wilson model.) In this model one associates the Fermionic 
measure space (pt., A*(W,| W~),~8) to the lattice point i, and in forming 
the Green's functions also averages over the space of connections using the 
Yang-Mills action (see the end of Section 2.3). This model has no first-order 
observables. Wilson conjectures that in four dimensions this model has no 
phase transition (i.e., T C = ~),  and hence that quarks are simultaneously 
asymptotically free and also confined. 
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